Есть ли хороший шаблон для сериализации / десериализации (маринования) классов numba? Следующее дает мне
other = pkl.loads(pkl.dumps(jc))
File "/usr/lib/python2.7/copy_reg.py", line 71, in _reduce_ex
state = base(self)
TypeError: function takes at most 0 arguments (1 given)
Я бы хотел пройти много уроков.
@jitclass([
('uncal_minRange', float64),
('uncal_maxRange', float64),
('nSize', int64),
('cal_percent', int64),
])
class SomeJitClass(object):
def __init__(self, uncal_minRange=0.0, uncal_maxRange=0.0, nSize=0, cal_percent=0.0 ):
self.uncal_minRange = uncal_minRange
self.uncal_maxRange = uncal_maxRange
self.cal_percent = cal_percent
self.nSize = nSize
def compare(self, other):
return self.uncal_minRange == other.uncal_minRange and \
self.uncal_maxRange == other.uncal_maxRange and \
self.cal_percent == other.cal_percent and \
self.nSize == other.nSize
import unittest
class FastOpsTest(unittest.TestCase):
def test_jit_class(self):
import cPickle as pkl
jc = SomeJitClass(1,2,3,4)
print jc
self.assertTrue(jc.compare(SomeJitClass(1,2,3,4)))
self.assertFalse(jc.compare(SomeJitClass(1,2,3,5)))
other = pkl.loads(pkl.dumps(jc))
self.assertTrue(jc.compare(other))
2 ответа
Ниже приведено возможное решение, но в стороне, мне трудно рекомендовать использование jitclass в его текущей (начало 2018 года) реализации - просто слишком ограничительно / незрело. Если возможно, оставаясь в numba-land, я бы попытался использовать простые массивы / бесплатные функции, и / или именованные кортежи могут быть хорошим решением для объединения некоторых связанных состояний. Вдобавок / в качестве альтернативы cython - хороший инструмент для разработки более богатых типов, которые могут лучше работать с python.
Тем не менее, вот возможный обходной путь. Я использую немного внутреннего устройства numba, поэтому, возможно, не будет стабильным в будущем.
def dumps_jitclass(jc):
typ = jc._numba_type_
fields = typ.struct
data = {
'name': typ.classname,
'struct': {k: getattr(jc, k) for k in fields}
}
return pickle.dumps(data)
def loads_jitclass(s):
data = pickle.loads(s)
cls = globals()[data['name']]
instance = cls(**data['struct'])
return instance
# usage
In [148]: jc = loads_jitclass(dumps_jitclass(SomeJitClass(1, 2, 3, 4)))
In [149]: oth = SomeJitClass(1, 2, 3, 4)
In [150]: jc.compare(oth)
Out[150]: True
Благодаря ответу @chrisb. Внес некоторые изменения в свой проект (от начинающего декоратора).
import pickle
from functools import wraps, update_wrapper
import numpy as np
from numba import jitclass, int32, float64
class jitpickler:
'''
pickler
'''
def __init__(self, jitobj):
self.__dict__['obj'] = jitobj
self.__dict__['__module__'] = jitobj.__module__
self.__dict__['__doc__'] = jitobj.__doc__
def __getstate__(self):
obj = self.__dict__['obj']
typ = obj._numba_type_
fields = typ.struct
return typ.classname, {k: getattr(obj, k) for k in fields}
def __setstate__(self, state):
name, value = state
cls = globals()[name]
value['_decorator'] = False
jitobj = cls(**value)
self.__init__(jitobj)
def __getattr__(self, attr):
return getattr(self.__dict__['obj'], attr)
def __setattr__(self, attr, value):
return setattr(self.__dict__['obj'], attr, value)
def __delattr__(self, attr):
return delattr(self.__dict__['obj'], attr)
def jitpickle(cls):
decoratorkw = '_decorator'
@wraps(cls)
def decorator(*args, **kwargs):
if kwargs.get(decoratorkw, True):
kwargs.pop(decoratorkw, None)
return jitpickler(cls(*args, **kwargs))
else:
kwargs.pop(decoratorkw, None)
return cls(*args, **kwargs)
return decorator
Когда использовать это
spec = [
('value', int32),
('array', float64[:])]
@jitpickle
@jitclass(spec)
class cls:
def __init__(self, value, array):
self.value = value
self.array = array
a = cls(10, np.array([1.1,2.2]))
s = pickle.dumps(a)
b = pickle.loads(s)
print(b.value, b.array)
Ps: update_wrapper
не работал для перегрузки __setattr__
. И я не хочу делать __setattr__
слишком толстым.
Похожие вопросы
Новые вопросы
python
Python - это многопарадигмальный, динамически типизированный, многоцелевой язык программирования. Он разработан для быстрого изучения, понимания и использования, а также для обеспечения чистого и единообразного синтаксиса. Обратите внимание, что Python 2 официально не поддерживается с 01.01.2020. Тем не менее, для вопросов о Python, связанных с версией, добавьте тег [python-2.7] или [python-3.x]. При использовании варианта Python (например, Jython, PyPy) или библиотеки (например, Pandas и NumPy) включите его в теги.