Я пытаюсь очистить все исторические данные индекса загрязнения воздуха с сайта Департамента окружающей среды Малайзии, где данные для всех станций разделены на 4 почасовых ссылки в день, как показано ниже.

http://apims.doe.gov.my/apims/hourly1.php?date=20130701 http://apims.doe.gov.my/apims/hourly2.php?date=20130701

То же, что и выше, с "hourly3.php?" и "hourly4.php?"

Я лишь немного знаком с R, так что было бы проще всего сделать это, используя, может быть, библиотеку XML или scrapeR?

-2
Funkeh-Monkeh 3 Мар 2015 в 05:50

2 ответа

Лучший ответ

Вы можете превратить все таблицы в широкий фрейм данных с помощью операций со списком:

library(rvest)
library(magrittr)
library(dplyr)

date <- 20130701
rng <- c(1:4)

my_tabs <- lapply(rng, function(i) {
  url <- sprintf("http://apims.doe.gov.my/apims/hourly%d.php?date=%s", i, date)
  pg <- html(url)
  pg %>% html_nodes("table") %>% extract2(1) %>% html_table(header=TRUE)
})

glimpse(plyr::join_all(my_tabs, by=colnames(my_tabs[[1]][1:2])))

## Observations: 52
## Variables:
## $ NEGERI / STATE   (chr) "Johor", "Johor", "Johor", "Johor", "Kedah...
## $ KAWASAN/AREA     (chr) "Kota Tinggi", "Larkin Lama", "Muar", "Pas...
## $ MASA/TIME12:00AM (chr) "63*", "53*", "51*", "55*", "37*", "48*", ...
## $ MASA/TIME01:00AM (chr) "62*", "52*", "52*", "55*", "36*", "48*", ...
## $ MASA/TIME02:00AM (chr) "61*", "51*", "53*", "55*", "35*", "48*", ...
## $ MASA/TIME03:00AM (chr) "60*", "50*", "54*", "55*", "35*", "48*", ...
## $ MASA/TIME04:00AM (chr) "59*", "49*", "54*", "54*", "34*", "47*", ...
## $ MASA/TIME05:00AM (chr) "58*", "48*", "54*", "54*", "34*", "45*", ...
## $ MASA/TIME06:00AM (chr) "57*", "47*", "53*", "53*", "33*", "45*", ...
## $ MASA/TIME07:00AM (chr) "57*", "46*", "52*", "53*", "32*", "45*", ...
## $ MASA/TIME08:00AM (chr) "56*", "45*", "52*", "52*", "32*", "44*", ...
## ...

Я редко загружаю / использую plyr из-за конфликтов имен с dplyr, но join_all идеально подходит для этой ситуации.

Также вероятно, что вам понадобятся эти данные в длинном формате:

plyr::join_all(my_tabs, by=colnames(my_tabs[[1]][1:2])) %>% 
  tidyr::gather(masa, nilai, -1, -2) %>%
# better column names
  rename(nigeri=`NEGERI / STATE`, kawasan=`KAWASAN/AREA`) %>%  
# cleanup & convert time (using local timezone)
# make readings numeric; NA will sub for #
  mutate(masa=gsub("MASA/TIME", "", masa), 
         masa=as.POSIXct(sprintf("%s %s", date, masa), format="%Y%m%d %H:%M%p", tz="Asia/Kuala_Lumpur"),
         nilai=as.numeric(gsub("[[:punct:]]+", "", nilai))) -> pollut

head(pollut)
##   nigeri                 kawasan                masa nilai
## 1  Johor             Kota Tinggi 2013-07-01 12:00:00    63
## 2  Johor             Larkin Lama 2013-07-01 12:00:00    53
## 3  Johor                    Muar 2013-07-01 12:00:00    51
## 4  Johor            Pasir Gudang 2013-07-01 12:00:00    55
## 5  Kedah              Alor Setar 2013-07-01 12:00:00    37
## 6  Kedah Bakar Arang, Sg. Petani 2013-07-01 12:00:00    48
0
hrbrmstr 3 Мар 2015 в 11:10

Вы можете использовать функцию R readHTMLTable для извлечения таблиц HTML из URL-адресов Министерства энергетики Малайзии, которые вы указали выше. В качестве примера возьмем первый URL:

# Make sure you have the XML package installed
library(XML)
url <- "http://apims.doe.gov.my/apims/hourly1.php?date=20130701"
all.tables <- readHTMLTable(url)
# the URL you gave only has one <table> tag
table <- all.tables[[1]]
# and now you have a data frame 'table' which contains the contents
# of the air pollutant table
0
Tim Biegeleisen 3 Мар 2015 в 03:05