Я пытаюсь получить доступ к данным в IBM COS из Data Science Experience на основе этого запись в блоге.

Сначала я выбираю версию Stocator 1.0.8 ...

!pip install --user --upgrade pixiedust
import pixiedust
pixiedust.installPackage("com.ibm.stocator:stocator:1.0.8")

Перезапустил ядро, потом ...

access_key = 'xxxx'
secret_key = 'xxxx'
bucket = 'xxxx'
host = 'lon.ibmselect.objstor.com'

hconf = sc._jsc.hadoopConfiguration()
hconf.set("fs.s3d.service.endpoint", "http://" + host)
hconf.set("fs.s3d.service.access.key", access_key)
hconf.set("fs.s3d.service.secret.key", secret_key)

file = 'mydata_file.tsv.gz'

inputDataset = "s3d://{}.service/{}".format(bucket, file)

lines = sc.textFile(inputDataset, 1)
lines.count()

Однако это приводит к следующей ошибке:

Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: java.lang.AbstractMethodError: com/ibm/stocator/fs/common/IStoreClient.setStocatorPath(Lcom/ibm/stocator/fs/common/StocatorPath;)V
    at com.ibm.stocator.fs.ObjectStoreFileSystem.initialize(ObjectStoreFileSystem.java:104)
    at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2669)
    at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:94)
    at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2703)
    at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2685)
    at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:373)
    at org.apache.hadoop.fs.Path.getFileSystem(Path.java:295)
    at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:258)
    at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:229)
    at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:315)
    at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:199)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:251)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:249)
    at scala.Option.getOrElse(Option.scala:121)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:249)
    at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:251)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:249)
    at scala.Option.getOrElse(Option.scala:121)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:249)
    at org.apache.spark.api.python.PythonRDD.getPartitions(PythonRDD.scala:53)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:251)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:249)
    at scala.Option.getOrElse(Option.scala:121)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:249)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1927)
    at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:932)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:378)
    at org.apache.spark.rdd.RDD.collect(RDD.scala:931)
    at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:453)
    at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:95)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:55)
    at java.lang.reflect.Method.invoke(Method.java:507)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:237)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:280)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:214)
    at java.lang.Thread.run(Thread.java:785)

Примечание. Моя первая попытка подключения к IBM COS привела к другой ошибке. Эта попытка описана здесь: Нет файловой системы для схемы: cos

1
Chris Snow 3 Сен 2017 в 06:20

4 ответа

Лучший ответ

Не пытайтесь принудительно установить новый Stocator, если у вас нет веских причин.

Я настоятельно рекомендую документацию Spark aaS по адресу:

https://console.bluemix.net/docs/services/AnalyticsforApacheSpark/index-gentopic1.html#genTopProcId2

Пожалуйста, выберите правильные конечные точки COS из:

https://ibm-public-cos.github.io/crs-docs/endpoints

И ПОЖАЛУЙСТА, используйте частные конечные точки, если вы работаете из IBM Cloud. Это будет намного быстрее и дешевле.

У него есть примеры того, как получить доступ к данным COS, используя всех хороших помощников. Это будет сводиться к

import ibmos2spark

credentials = {
  'endpoint': 's3-api.us-geo.objectstorage.service.networklayer.com',  #just an example. Your url might be different
  'access_key': 'my access key',
  'secret_key': 'my secret key'
}
bucket_name = 'my bucket name'
object_name = 'mydata_file.tsv.gz'

cos = ibmos2spark.CloudObjectStorage(sc, credentials)
lines = sc.textFile(cos.url(object_name, bucket_name),1)
lines.count()
1
Trent Gray-Donald 5 Сен 2017 в 22:27

Крис, я обычно не использую 'http: //' в конечной точке, и это работает для меня. Не уверен, что это проблема здесь.

Вот как я могу получить доступ к объектам COS с ноутбуков DSX

endpoint = "s3-api.dal-us-geo.objectstorage.softlayer.net"

hconf = sc._jsc.hadoopConfiguration()
hconf.set("fs.s3d.service.endpoint",endpoint)
hconf.set("fs.s3d.service.access.key",Access_Key_ID)
hconf.set("fs.s3d.service.secret.key",Secret_Access_Key)

inputObject = "s3d://<bucket>.service/<file>"
myRDD = sc.textFile(inputObject,1)
1
Vaibhav Kulkarni 4 Сен 2017 в 05:12

Не нужно устанавливать Stocator, он уже есть. Как отметил Роланд, новая установка, скорее всего, столкнется с предварительно установленной и вызовет конфликты.

Попробуйте ibmos2spark: https://stackoverflow.com/a/46035893/8558372

Дайте мне знать, если у вас все еще есть проблемы.

2
Bassel Zeidan 4 Сен 2017 в 11:27

DSX имеет версию Stocator в classpath для ядер Spark 2.0 и Spark 2.1. Тот, который вы установили в вашем экземпляре, может вступить в конфликт с предустановленной версией.

1
Roland Weber 4 Сен 2017 в 05:40