Проблема состоит в том, чтобы найти оптимальное (максимальное) значение x3 в диапазоне (от -8e-4 до 2e-4) путем изменения kst, x1, x5 и xo)

x5=5    %Input 2 (Input 2 is a state variable and could vary in range of 4 to 15 while performing 
                  optimization)
kst=1   %Input 3 (Input 3 is in terms of rate constant, it could vary from 0.1 to 2)
xo=4    %Input 4 (Input 4 is a state variable and could vary in range of 4 to 10)
x1=1e-7 %Input 1 could vary from 1e-9 to 1e-6
  1. Файл сценария

    function rest = Scrpt1(t,X)
    x2 = X(1); 
    x3 = X(2); 
    
    %Parameters
    
    if t<15
    
    x1 = 1e-7; %Input 1 could vary from 1e-9 to 1e-6
    
    else x1 = 0;
    
    end
    
    x5=5 %Input 2 (Input 2 is a state variable and could vary in range of 4 to 15 while performing optimization)
    
    kst=1 %Input 3 (Input 3 is in terms of rate constant, it could vary from 0.1 to 2)

    xo=4 %Input 4 (Input 4 is a state variable and could vary in range of 4 to 10)
    
    k1 = 6e7;

    km1 = 0.20;

    km4 = 0.003;

    k3 = 2500.00;

    k4 = km4/9;

    km3 = km1;

    LAP=1.5

% Differential equations

    dx2dt = km1*x3 + km3*LAP - k1*x1*x2 + km4*x3 - k4*x2;

    dx3dt = k1*x1*x2 - km1*(x3+x5+xo) - k3*x3*kst;

    rest = [dx2dt; dx3dt];

    end
  1. Функциональный файл для решения ODE
    options = odeset('InitialStep',0.0001,'RelTol',1e-09);
    
    [T,Y]=ode15s(@Scrpt1,[0 60],[9e-13,0],options);
    
    X3= Y(:,2);
    
    plot(T,X3)

Как использовать fmincon или любой другой решатель оптимизации для решения упомянутой задачи оптимизации поиска максимального значения x3. При каких значениях x5, kst, xo, x1 мы получаем максимальное значение x3?

2
user16739361 5 Сен 2021 в 18:04

2 ответа

Лучший ответ

Сначала вы должны добавить значения, которые вы хотите оптимизировать, в качестве параметров ваших связанных дифференциальных уравнений:

function rest = Scrpt1(t,X,X_opt)
    
    x5=X_opt(1);
    kst=X_opt(2);
    xo=X_opt(3);
    x1=X_opt(4);  
    x2 = X(1); 
    x3 = X(2); 
    
    %Parameters
    
    if t>=15
    x1 = 0;  
    end
    
    k1 = 6e7;
    km1 = 0.20;
    km4 = 0.003;
    k3 = 2500.00;
    k4 = km4/9;
    km3 = km1;
    LAP=1.5;

% Differential equations

    dx2dt = km1*x3 + km3*LAP - k1*x1*x2 + km4*x3 - k4*x2;
    dx3dt = k1*x1*x2 - km1*(x3+x5+xo) - k3*x3*kst;
    rest = [dx2dt; dx3dt];
    end

Тогда вам нужно написать функцию-оболочку, которую вы хотите минимизировать. Поскольку вы хотите максимизировать x3, вам нужно добавить минус к своей цели.

function max_X3=fun(X_opt) 
    tspan=[0 60];
    y0=[9e-13,0];
    options = odeset('InitialStep',0.0001,'RelTol',1e-09);
    
    [~,y] = ode15s(@(t,y) Scrpt1(t,y,X_opt), tspan, y0,options);
    
    max_X3=-max(y(:,2));
end

Наконец, вы можете использовать fmincon следующим образом:

% x5, kst, xo, x1
initial_search_point=[5, 1, 4, 1e-7]
lower_bounds=[4, 0.1, 4, 1e-9]
upper_bounds=[15, 2, 10, 1e-6]

fmincon(@fun,initial_search_point,[],[],[],[], lower_bounds,upper_bounds)
1
Erysol 6 Сен 2021 в 13:53

Ниже представлено решение в Gekko, которое может работать на Python или с Интерфейс Python для MATLAB.

x3 maximize

import numpy as np
from gekko import GEKKO

n = 121; t = np.linspace(0,60,n)

m = GEKKO(remote=False)
m.time = t

k1 = 6e7; km1 = 0.20; km4 = 0.003;
k3 = 2500.00; k4 = km4/9;
km3 = km1; LAP=1.5

x5  = m.FV(value=5,lb=4,ub=15);  x5.STATUS = 1
kst = m.FV(value=1,lb=0.1,ub=2); kst.STATUS = 1
xo  = m.FV(value=4,lb=4,ub=10);  xo.STATUS = 1
x1  = m.FV(value=[1e-17 if t[i]<15 else 0 for i in range(n)],\
           lb=1e-9,ub=1e-6)
x2,x3 = m.Array(m.Var,2)
x3.value = -0.00032
x3.lower = -8e-4
x3.upper = 2e-4

m.Equations([x2.dt()==km1*x3+km3*LAP-k1*x1*x2+km4*x3-k4*x2,
             x3.dt()==k1*x1*x2-km1*(x3+x5+xo)-k3*x3*kst])
m.Maximize(x3)

m.options.SOLVER = 1
m.options.IMODE  = 6
m.solve()

import matplotlib.pyplot as plt
plt.plot(m.time,x3)
plt.show()

Начальные условия для x2 и x3 не определены.

 Number of state variables:            483
 Number of total equations: -          480
 Number of slack variables: -            0
 ---------------------------------------
 Degrees of freedom       :              3
 
 ----------------------------------------------
 Dynamic Control with APOPT Solver
 ----------------------------------------------
 
 Iter    Objective  Convergence
    0  4.99217E+02  2.99935E-01
    1  6.07645E-02  4.31439E-05
    2  3.25294E-02  3.04712E-05
    3  3.41027E-02  8.96081E-05
    4  3.31615E-02  2.48287E-06
    5  3.31615E-02  2.22045E-16
    6  3.31615E-02  2.22045E-16
 Successful solution
 
 ---------------------------------------------------
 Solver         :  APOPT (v1.0)
 Solution time  :   2.189999999245629E-002 sec
 Objective      :   3.316154172805905E-002
 Successful solution
 ---------------------------------------------------
1
John Hedengren 6 Сен 2021 в 20:40